Developing Pipelines¶
LOST Ecosystem¶
All about Pipelines¶
#TODO JJ Review
Pipeline Projects¶
A pipeline project in LOST is defined as a folder or git repository that contains pipeline definition files in json format and related python3 scripts. Additional, other files can be placed into this folder that can be accessed by the scripts of a pipeline.
Pipeline Project Examples¶
Pipeline project examples can be found here: LOST Out of the Box Pipelines
Repository Structure¶
lost_ootb_pipes/
├── found
│ ├── cluster_using_prev_stage.py
│ ├── __init__.py
│ ├── mia.json
│ ├── mia_request_again.json
│ ├── mia_sia.json
│ ├── request_annos_again.py
│ ├── request_annos.py
│ ├── request_images_by_lbl.py
│ ├── sia.json
│ ├── sia_request_again.json
│ └── two_stage.json
├── LICENSE
└── README.md
1 directory, 13 files
The listing above shows an example for a pipeline directory structure. Where the root folder lost_ootb_pipes is the repo name and found is the name of the pipeline project. found contains all files required for the pipelines of the pipeline project. Within the project there are json files where each represents a pipeline definition. A pipeline is composed from different scripts (request_annos.py, request_annos_again.py, request_images._by_lbl.py) and other pipeline elements. Some of the scripts may require a special python package you have written. So if you want to use this package (e.g. my_special_python_lib), just place it also inside the pipeline project folder. Sometimes it is also useful to place some files into the project folder, for example a pretrained ai model that should be loaded inside a script.
Importing a Pipeline Project into LOST¶
After creating a pipeline it needs to be imported into LOST. In order to do that, you need to perform the following steps:
- Log into LOST as Admin
- Go to Admin Area
- Click on the Pipeline Projects tab
- Click on Import pipeline project button
- Click on Import/ Update pipeline project from a public git repository
- Add the url of the pipeline project you like to import
- Click on Import/ Update

Pipeline import GUI
Updating a LOST Pipeline¶
If there was an update for one of your pipelines you need to update your pipe project in LOST.In order to do this, the procedure is the same as for importing a pipeline
Namespacing¶
When importing or updating a pipeline project in LOST the following namespacing will be applied to pipelines: <name of pipeline project folder>.<name of pipeline json file>. In the same way scripts will be namespaced internally by LOST: <name of pipeline project folder>.<name of python script file>.
So in our example the pipelines would be named found.mia and found.mia_request_again ….
Pipeline Definition Files¶
Within the pipeline definition file you define your annotation process. Such a pipeline is composed of different standard elements that are supported by LOST like datasource, script, annotTask, dataExport, visualOutput and loop. Each pipeline element is represented by a json object inside the pipeline definition.
As you can see in the example, the pipeline itself is also defined by a json object. This object has a description, a author, a pipe-schema-version and a list of pipeline elements. Each element object has a peN (pipeline element number) which is the identifier of the element itself. An element needs also an attribute that is called peOut and contains a list of elements where the current element is connected to.
An Example¶
Possible Pipeline Elements¶
Below you will find the definition of all possible pipeline elements in LOST.
1 2 3 4 5 6 7 | {
"peN" : "[int]",
"peOut" : "[list of int]|[null]",
"datasource" : {
"type" : "rawFile"
}
}
|
Datasource elements are intended to provide datasets to Script elements. To be more specific it will provide a path inside the LOST system. In most cases this will be a path to a folder with images that should be annotated. The listing above shows the definition of a Datasource element. At the current state only type rawFile is supported, which will provide a path.
1 2 3 4 5 6 7 8 | {
"peN" : "[int]",
"peOut" : "[list of int]|[null]",
"script" : {
"path": "[string]",
"description" : "[string]"
}
}
|
Script elements represent python3 scripts that are executed as part of your pipeline. In order to define a Script you need to specify a path to the script file relative to the pipeline project folder and a short description of your script.
1 2 3 4 5 6 7 8 9 10 | {
"peN" : "[int]",
"peOut" : "[list of int]|[null]",
"annoTask" : {
"type" : "mia|sia",
"name" : "[string]",
"instructions" : "[string]",
"configuration":{"..."}
}
}
|
An AnnoTask represents an annotation task for a human-in-the-loop. Scripts can request annotations for specific images that will be presented in one of the annotation tools in the web gui.
Right now two types of annotation tools are available. If you set type to sia the single image annotation tool will be used for annotation. When choosing mia the images will be present in the multi image annotation tool.
An AnnoTask requires also a name and instructions for the annotator. Based on the type a specific configuration is required.
If “type” is “mia” the configuration will be the following:
1 2 3 4 5 6 | {
"type": "annoBased|imageBased",
"showProposedLabel": "[boolean]",
"drawAnno": "[boolean]",
"addContext": "[float]"
}
|
- MIA configuration:
- type
- If imageBased a whole image will be presented in the clustered view.
- If annoBased all
lost.db.model.TwoDAnno
objects related to an image will be cropped and presented in the clustered view.
- showProposedLabel
- If true, the assigned sim_class will be interpreted as label and be used as pre-selection of the label in the MIA tool.
- drawAnno
- If true and type : annoBased the specific annotation will be drawn inside the cropped image.
- addContext
- If type : annoBased and addContext > 0.0, some amount of pixels will be added around the annotation when the annotation is cropped. The number of pixels that are add is calculated relative to the image size. So if you set addContext to 0.1, 10 percent of the image size will be added to the crop. This setting is useful to provide the annotator some more visual context during the annotation step.
If “type” is “sia” the configuration will be the following:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | {
"tools": {
"point": "[boolean]",
"line": "[boolean]",
"polygon": "[boolean]",
"bbox": "[boolean]",
"junk": "[boolean]"
},
"annos":{
"multilabels": "[boolean]",
"actions": {
"draw": "[boolean]",
"label": "[boolean]",
"edit": "[boolean]",
},
"minArea": "[int]",
"maxAnnos": "[int or null]"
},
"img": {
"multilabels": "[boolean]",
"actions": {
"label": "[boolean]",
}
}
}
|
- SIA configuration:
- tools
- Inside the tools object you can select which drawing tools are available and if the junk button is present in the SIA gui. You may choose either true or false for each of the tools (point, line, polygon, bbox, junk).
- annos (configuration for annotations on the image)
- actions
- draw is set to false a user may not draw any new annotations. This is useful if a script sent annotation proposals to SIA and the user should only correct the proposed annotations.
- label allows to disable the possibility to assign labels to annotations. This option is useful if you wish that your annotator will only draw annotations.
- edit inidcates wether an annotator may edit an annotation that is already present.
- multilabels allows to assign multiple labels per annotation.
- minArea The minimum area in pixels that an annotation may have. This constraint is only applied to annotations where an area can be defined (e.g. BBoxs, Polygons).
- maxAnnos Maximum number of annos that are allowed per image. If null an infinite number of annotation are allowed per image.
- img (configuration for the image)
- actions
- label allows to disable the possibility to assign labels to the image.
- multilabels allows to assign multiple labels to the image.
1 2 3 4 5 | {
"peN" : "[int]",
"peOut" : "[list of int]|[null]",
"dataExport" : {}
}
|
A DataExport is used to serve a file generated by a script in the
web gui.
No special configuration is required for this pipeline element.
The file to download will be provided by a Script that is connected
to the input of the DataExport element.
This Script will call the
lost.pyapi.inout.ScriptOutput.add_data_export()
method in order
to do that.
1 2 3 4 5 | {
"peN" : "[int]",
"peOut" : "[list of int]|[null]",
"visualOutput" : {}
}
|
A VisualOutput element can display images and html text inside the
LOST web gui.
A connected Script element will provide the content to an VisualOutput
by calling lost.pyapi.inout.ScriptOutput.add_visual_output()
.
1 2 3 4 5 6 7 8 | {
"peN": "[int]",
"peOut": "[list of int]|[null]",
"loop": {
"maxIteration": "[int]|[null]",
"peJumpId": "[int]"
}
}
|
A Loop element can be used to build learning loops inside of a pipeline. Such a Loop models a similar behaviour to a while loop in a programming language.
The peJumpId defines the peN of another element in the pipeline where this Loop should jump to while looping. The maxIteration setting inside a loop definition can be set to a maximum amount of iterations that should be performed or to null in order to have an infinity loop.
A Script element inside a loop cycle may break a loop by calling
lost.pyapi.script.Script.break_loop()
.
Scripts inside a loop cycle may check if a loop was broken by calling
lost.pyapi.script.Script.loop_is_broken()
.
All about Scripts¶
pyapi¶
#TODO JJ Review
-
class
lost.pyapi.script.
Script
(pe_id=None)[source]¶ Superclass for a user defined Script.
Custom scripts need to inherit from Script and implement the main method.
-
pe_id
¶ Pipe element id. Assign the pe id of a pipline script in order to emulate this script in a jupyter notebook for example.
Type: int
-
create_label_tree
(name, external_id=None)[source]¶ Create a new LabelTree
Parameters: - name (str) – Name of the tree / name of the root leaf.
- external_id (str) – An external id for the root leaf.
Returns: The created LabelTree.
Return type:
-
get_alien_element
(pe_id)[source]¶ Get an pipeline element by id from somewhere in the LOST system.
It is an alien element since it is most likely not part of the pipeline instance this script belongs to.
Parameters: pe_id (int) – PipeElementID of the alien element. Returns:
-
get_arg
(arg_name)[source]¶ Get argument value by name for this script.
Parameters: arg_name (str) – Name of the argument. Returns: Value of the given argument.
-
get_fs
(name=None)[source]¶ Get default lost filesystem or a specific filesystem by name.
Returns: See https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem Return type: fsspec.spec.AbstractFileSystem
-
get_label_tree
(name)[source]¶ Get a LabelTree by name.
Parameters: name (str) – Name of the desired LabelTree. - Retruns:
lost.logic.label.LabelTree
or None:- If a label tree with the given name exists it will be returned. Otherwise None will be returned
-
get_path
(file_name, context='instance')[source]¶ Get path for the filename in a specific context in filesystem.
Parameters: - file_name (str) – Name or relative path for a file.
- context (str) – Options: instance, pipe
Returns: Absolute path to the file in the specified context.
Return type: str
-
iteration
¶ Get the current iteration.
Number of times this script has been executed.
Type: int
-
logger
¶ A standard python logger for this script.
It will log to the pipline log file.
Type: logging.Logger
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
progress
¶ Get current progress that is displayed in the progress bar of this script.
Current progress in percent 0…100
Type: float
-
reject_execution
()[source]¶ Reject execution of this script and set it to PENDING again.
Note
This method is useful if you want to execute this script only when some condition based on previous pipeline elements is meet.
-
inout¶
ScriptOutput¶
-
class
lost.pyapi.inout.
ScriptOutput
(script)[source]¶ Special
Output
class sincelost.pyapi.script.Script
objects may manipulate and request annotations.-
add_data_export
(file_path, fs)[source]¶ Serve a file for download inside the web gui via a DataExport element.
Parameters: - file_path (str) – Path to the file that should be provided for download.
- fs (filesystem) – Filesystem, where file_path is valid.
-
add_visual_output
(img_path=None, html=None)[source]¶ Display an image and html in the web gui via a VisualOutput element.
Parameters: - img_path (str) – Path in the lost filesystem to the image to display.
- html (str) – HTML text to display.
-
anno_tasks
¶ list of
lost.pyapi.pipe_elements.AnnoTask
objects
-
bbox_annos
¶ Iterate over all bbox annotation.
Returns: Iterator of lost.db.model.TwoDAnno
.
-
data_exports
¶ list of
lost.pyapi.pipe_elements.VisualOutput
objects.
-
datasources
¶ list of
lost.pyapi.pipe_elements.Datasource
objects
-
img_annos
¶ Iterate over all
lost.db.model.ImageAnno
objects in this Resultset.Returns: Iterator of lost.db.model.ImageAnno
objects.
-
line_annos
¶ Iterate over all line annotations.
Returns: Iterator of lost.db.model.TwoDAnno
objects.
-
mia_tasks
¶ list of
lost.pyapi.pipe_elements.MIATask
objects
-
point_annos
¶ Iterate over all point annotations.
Returns: Iterator of lost.db.model.TwoDAnno
.
-
polygon_annos
¶ Iterate over all polygon annotations.
Returns: Iterator of lost.db.model.TwoDAnno
objects.
-
request_annos
(img, img_labels=None, img_sim_class=None, annos=[], anno_types=[], anno_labels=[], anno_sim_classes=[], frame_n=None, video_path=None, fs=None, img_meta=None, anno_meta=None, img_comment=None)[source]¶ Request annotations for a subsequent annotaiton task.
Parameters: - img (str or ImageAnno) – Path to the image or database image where annotations will be requested for
- img_label (list of int) – Labels that will be assigned to the image. The labels should be represented by a label_leaf_id. An image may have multiple labels.
- img_sim_class (int) – A culster id that will be used to cluster this image in the MIA annotation tool.
- annos (list of list) – A list of POINTs: [x,y] BBOXes: [x,y,w,h] LINEs or POLYGONs: [[x,y], [x,y], …]
- anno_types (list of str) – Can be ‘point’, ‘bbox’, ‘line’, ‘polygon’
- anno_labels (list of int) – Labels for the twod annos.
Each label in the list is represented by a label_leaf_id.
(see also
LabelLeaf
). - anno_sim_classes (list of ints) – List of arbitrary cluster ids that are used to cluster annotations in the MIA annotation tool.
- frame_n (int) – If img_path belongs to a video frame_n indicates the framenumber.
- video_path (str) – If img_path belongs to a video this is the path to this video.
- fs (fsspec.spec.AbstractFileSystem) – The filesystem where image is located. Use lost standard filesystem if no filesystem was given. You can get this Filesystem object from a DataSource-Element by calling get_fm method.
- img_meta (dict) – Dictionary with meta information that should be added to the image annotation. Each meta key will be added as column during annotation export. the dict-value will be row content.
- anno_meta (list of dict) – List of dictionaries with meta information that should be added to a specific annotation. Each meta key will be added as column during annotation export. The dict-value will be row content.
- img_comment (str) – A comment that will be added to this image.
Example
Request human annotations for an image with annotation proposals:
>>> self.outp.request_annos('path/to/img.jpg', ... annos = [ ... [0.1, 0.1, 0.2, 0.2], ... [0.1, 0.2], ... [[0.1, 0.3], [0.2, 0.3], [0.15, 0.1]] ... ], ... anno_types=['bbox', 'point', 'polygon'], ... anno_labels=[ ... [1], ... [1], ... [4] ... ], ... anno_sim_classes=[10, 10, 15] ... )
Reqest human annotations for an image without porposals:
>>> self.outp.request_annos('path/to/img.jpg')
-
request_lds_annos
(lds, fs=None, anno_meta_keys=[], img_meta_keys=[], img_path_key='img_path')[source]¶ Request annos from LOSTDataset.
Parameters: - lds (LOSTDataset) – A lost dataset object. Request all annotation in this dataset again.
- fs (fsspec.spec.AbstractFileSystem) – The filesystem where image is located. Use lost standard filesystem if no filesystem was given. You can get this Filesystem object from a DataSource-Element by calling get_fm method.
- img_meta_keys (list) – Keys that should be used for img_anno meta information
- anno_meta_keys (list) – Keys that should be used for two_d_anno meta information
-
sia_tasks
¶ list of
lost.pyapi.pipe_elements.SIATask
objects
-
to_df
()¶ Get a pandas DataFrame of all annotations related to this object.
Returns: - Column names are:
- ’img_uid’, img_timestamp’, img_state’, img_sim_class’, img_frame_n’, ‘img_path’,’img_iteration’,’img_user_id’,’img_anno_time’,’img_lbl’, ‘img_lbl_id’,’img_user’,’img_is_junk’,’img_fs_name’,’anno_uid’, ‘anno_timestamp’,’anno_state’,’anno_dtype’,’anno_sim_class’, ‘anno_iteration’,’anno_user_id’,’anno_user’,’anno_confidence’, ‘anno_time’,’anno_lbl’,’anno_lbl_id’,’anno_style’,’anno_format’, ‘anno_comment’,’anno_data’
Return type: pandas.DataFrame
-
to_vec
(columns='all')¶ Get a vector of all Annotations related to this object.
Parameters: columns (str or list of str) – ‘all’ OR ‘img_uid’, img_timestamp’, img_state’, img_sim_class’, img_frame_n’, ‘img_path’,’img_iteration’,’img_user_id’,’img_anno_time’,’img_lbl’, ‘img_lbl_id’,’img_user’,’img_is_junk’,’img_fs_name’,’anno_uid’, ‘anno_timestamp’,’anno_state’,’anno_dtype’,’anno_sim_class’, ‘anno_iteration’,’anno_user_id’,’anno_user’,’anno_confidence’, ‘anno_time’,’anno_lbl’,’anno_lbl_id’,’anno_style’,’anno_format’, ‘anno_comment’,’anno_data’ - Retruns:
- list OR list of lists: Desired columns
Example
Return just a list of 2d anno labels:
>>> self.outp.to_vec('anno_lbl') [['Person'],[],['Cat'],[],['Car'],['Person'],[],['Bird'],['Bird']]
Return a list of lists:
>>> self.outp.to_vec(['img_path', 'anno_lbl', ... 'anno_data', 'anno_dtype']) [ ['path/to/img1.jpg', ['Aeroplane'], [[0.1, 0.1, 0.2, 0.2]], 'bbox'], ['path/to/img1.jpg', ['Bicycle'], [[0.1, 0.1]], 'point'], ['path/to/img2.jpg', ['Bottle'], [[0.1, 0.1], [0.2, 0.2]], 'line'], ['path/to/img3.jpg', ['Horse'], [[0.2, 0.15, 0.3, 0.18]], 'bbox'] ]
-
twod_annos
¶ Iterate over 2D-annotations.
Returns: of lost.db.model.TwoDAnno
objects.Return type: Iterator
-
visual_outputs
¶ list of
lost.pyapi.pipe_elements.VisualOutput
objects.
-
Output¶
-
class
lost.pyapi.inout.
Output
(element)[source]¶ -
anno_tasks
¶ list of
lost.pyapi.pipe_elements.AnnoTask
objects
-
bbox_annos
¶ Iterate over all bbox annotation.
Returns: Iterator of lost.db.model.TwoDAnno
.
-
data_exports
¶ list of
lost.pyapi.pipe_elements.VisualOutput
objects.
-
datasources
¶ list of
lost.pyapi.pipe_elements.Datasource
objects
-
img_annos
¶ Iterate over all
lost.db.model.ImageAnno
objects in this Resultset.Returns: Iterator of lost.db.model.ImageAnno
objects.
-
line_annos
¶ Iterate over all line annotations.
Returns: Iterator of lost.db.model.TwoDAnno
objects.
-
mia_tasks
¶ list of
lost.pyapi.pipe_elements.MIATask
objects
-
point_annos
¶ Iterate over all point annotations.
Returns: Iterator of lost.db.model.TwoDAnno
.
-
polygon_annos
¶ Iterate over all polygon annotations.
Returns: Iterator of lost.db.model.TwoDAnno
objects.
-
sia_tasks
¶ list of
lost.pyapi.pipe_elements.SIATask
objects
-
to_df
()¶ Get a pandas DataFrame of all annotations related to this object.
Returns: - Column names are:
- ’img_uid’, img_timestamp’, img_state’, img_sim_class’, img_frame_n’, ‘img_path’,’img_iteration’,’img_user_id’,’img_anno_time’,’img_lbl’, ‘img_lbl_id’,’img_user’,’img_is_junk’,’img_fs_name’,’anno_uid’, ‘anno_timestamp’,’anno_state’,’anno_dtype’,’anno_sim_class’, ‘anno_iteration’,’anno_user_id’,’anno_user’,’anno_confidence’, ‘anno_time’,’anno_lbl’,’anno_lbl_id’,’anno_style’,’anno_format’, ‘anno_comment’,’anno_data’
Return type: pandas.DataFrame
-
to_vec
(columns='all')¶ Get a vector of all Annotations related to this object.
Parameters: columns (str or list of str) – ‘all’ OR ‘img_uid’, img_timestamp’, img_state’, img_sim_class’, img_frame_n’, ‘img_path’,’img_iteration’,’img_user_id’,’img_anno_time’,’img_lbl’, ‘img_lbl_id’,’img_user’,’img_is_junk’,’img_fs_name’,’anno_uid’, ‘anno_timestamp’,’anno_state’,’anno_dtype’,’anno_sim_class’, ‘anno_iteration’,’anno_user_id’,’anno_user’,’anno_confidence’, ‘anno_time’,’anno_lbl’,’anno_lbl_id’,’anno_style’,’anno_format’, ‘anno_comment’,’anno_data’ - Retruns:
- list OR list of lists: Desired columns
Example
Return just a list of 2d anno labels:
>>> self.outp.to_vec('anno_lbl') [['Person'],[],['Cat'],[],['Car'],['Person'],[],['Bird'],['Bird']]
Return a list of lists:
>>> self.outp.to_vec(['img_path', 'anno_lbl', ... 'anno_data', 'anno_dtype']) [ ['path/to/img1.jpg', ['Aeroplane'], [[0.1, 0.1, 0.2, 0.2]], 'bbox'], ['path/to/img1.jpg', ['Bicycle'], [[0.1, 0.1]], 'point'], ['path/to/img2.jpg', ['Bottle'], [[0.1, 0.1], [0.2, 0.2]], 'line'], ['path/to/img3.jpg', ['Horse'], [[0.2, 0.15, 0.3, 0.18]], 'bbox'] ]
-
twod_annos
¶ Iterate over 2D-annotations.
Returns: of lost.db.model.TwoDAnno
objects.Return type: Iterator
-
visual_outputs
¶ list of
lost.pyapi.pipe_elements.VisualOutput
objects.
-
Input¶
-
class
lost.pyapi.inout.
Input
(element)[source]¶ Class that represants an input of a pipeline element.
Parameters: element (object) – Related lost.db.model.PipeElement
object.-
anno_tasks
¶ list of
lost.pyapi.pipe_elements.AnnoTask
objects
-
bbox_annos
¶ Iterate over all bbox annotation.
Returns: Iterator of lost.db.model.TwoDAnno
.
-
data_exports
¶ list of
lost.pyapi.pipe_elements.VisualOutput
objects.
-
datasources
¶ list of
lost.pyapi.pipe_elements.Datasource
objects
-
img_annos
¶ Iterate over all
lost.db.model.ImageAnno
objects in this Resultset.Returns: Iterator of lost.db.model.ImageAnno
objects.
-
line_annos
¶ Iterate over all line annotations.
Returns: Iterator of lost.db.model.TwoDAnno
objects.
-
mia_tasks
¶ list of
lost.pyapi.pipe_elements.MIATask
objects
-
point_annos
¶ Iterate over all point annotations.
Returns: Iterator of lost.db.model.TwoDAnno
.
-
polygon_annos
¶ Iterate over all polygon annotations.
Returns: Iterator of lost.db.model.TwoDAnno
objects.
-
sia_tasks
¶ list of
lost.pyapi.pipe_elements.SIATask
objects
-
to_df
()[source]¶ Get a pandas DataFrame of all annotations related to this object.
Returns: - Column names are:
- ’img_uid’, img_timestamp’, img_state’, img_sim_class’, img_frame_n’, ‘img_path’,’img_iteration’,’img_user_id’,’img_anno_time’,’img_lbl’, ‘img_lbl_id’,’img_user’,’img_is_junk’,’img_fs_name’,’anno_uid’, ‘anno_timestamp’,’anno_state’,’anno_dtype’,’anno_sim_class’, ‘anno_iteration’,’anno_user_id’,’anno_user’,’anno_confidence’, ‘anno_time’,’anno_lbl’,’anno_lbl_id’,’anno_style’,’anno_format’, ‘anno_comment’,’anno_data’
Return type: pandas.DataFrame
-
to_vec
(columns='all')[source]¶ Get a vector of all Annotations related to this object.
Parameters: columns (str or list of str) – ‘all’ OR ‘img_uid’, img_timestamp’, img_state’, img_sim_class’, img_frame_n’, ‘img_path’,’img_iteration’,’img_user_id’,’img_anno_time’,’img_lbl’, ‘img_lbl_id’,’img_user’,’img_is_junk’,’img_fs_name’,’anno_uid’, ‘anno_timestamp’,’anno_state’,’anno_dtype’,’anno_sim_class’, ‘anno_iteration’,’anno_user_id’,’anno_user’,’anno_confidence’, ‘anno_time’,’anno_lbl’,’anno_lbl_id’,’anno_style’,’anno_format’, ‘anno_comment’,’anno_data’ - Retruns:
- list OR list of lists: Desired columns
Example
Return just a list of 2d anno labels:
>>> self.outp.to_vec('anno_lbl') [['Person'],[],['Cat'],[],['Car'],['Person'],[],['Bird'],['Bird']]
Return a list of lists:
>>> self.outp.to_vec(['img_path', 'anno_lbl', ... 'anno_data', 'anno_dtype']) [ ['path/to/img1.jpg', ['Aeroplane'], [[0.1, 0.1, 0.2, 0.2]], 'bbox'], ['path/to/img1.jpg', ['Bicycle'], [[0.1, 0.1]], 'point'], ['path/to/img2.jpg', ['Bottle'], [[0.1, 0.1], [0.2, 0.2]], 'line'], ['path/to/img3.jpg', ['Horse'], [[0.2, 0.15, 0.3, 0.18]], 'bbox'] ]
-
twod_annos
¶ Iterate over 2D-annotations.
Returns: of lost.db.model.TwoDAnno
objects.Return type: Iterator
-
visual_outputs
¶ list of
lost.pyapi.pipe_elements.VisualOutput
objects.
-
pipeline¶
PipeInfo¶
-
class
lost.pyapi.pipeline.
PipeInfo
(pipe, dbm)[source]¶ -
description
¶ Description that was defined when pipeline was started.
Type: str
-
logfile_path
¶ Path to pipeline log file.
Type: str
-
name
¶ Name of this pipeline
Type: str
-
timestamp
¶ Timestamp when pipeline was started.
Type: str
-
timestamp_finished
¶ Timestamp when pipeline was finished.
Type: str
-
user
¶ User who started this pipe
Type: User object
-
pipe_elements¶
Datasource¶
-
class
lost.pyapi.pipe_elements.
Datasource
(pe, dbm)[source]¶ -
-
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
path
¶ Relative path to file or folder
Type: str
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
AnnoTask¶
-
class
lost.pyapi.pipe_elements.
AnnoTask
(pe, dbm)[source]¶ -
configuration
¶ Configuration of this annotask.
Type: str
-
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
instructions
¶ Instructions for the annotator of this AnnoTask.
Type: str
-
lbl_map
¶ Map lbl_name to idx
Note
All label names will be mapped to lower case!
Type: dict
-
name
¶ A name for this annotask.
Type: str
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
possible_label_df
¶ Get all possible labels for this annotation task in DataFrame format
- pd.DataFrame: Column names are:
- ‘idx’, ‘name’, ‘abbreviation’, ‘description’, ‘timestamp’, ‘external_id’, ‘is_deleted’, ‘parent_leaf_id’ ,’is_root’
Type: pd.DataFrame
-
progress
¶ Progress in percent.
Value range 0…100.
Type: float
-
MIATask¶
-
class
lost.pyapi.pipe_elements.
MIATask
(pe, dbm)[source]¶ -
configuration
¶ Configuration of this annotask.
Type: str
-
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
instructions
¶ Instructions for the annotator of this AnnoTask.
Type: str
-
lbl_map
¶ Map lbl_name to idx
Note
All label names will be mapped to lower case!
Type: dict
-
name
¶ A name for this annotask.
Type: str
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
possible_label_df
¶ Get all possible labels for this annotation task in DataFrame format
- pd.DataFrame: Column names are:
- ‘idx’, ‘name’, ‘abbreviation’, ‘description’, ‘timestamp’, ‘external_id’, ‘is_deleted’, ‘parent_leaf_id’ ,’is_root’
Type: pd.DataFrame
-
progress
¶ Progress in percent.
Value range 0…100.
Type: float
-
SIATask¶
-
class
lost.pyapi.pipe_elements.
SIATask
(pe, dbm)[source]¶ -
configuration
¶ Configuration of this annotask.
Type: str
-
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
instructions
¶ Instructions for the annotator of this AnnoTask.
Type: str
-
lbl_map
¶ Map lbl_name to idx
Note
All label names will be mapped to lower case!
Type: dict
-
name
¶ A name for this annotask.
Type: str
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
possible_label_df
¶ Get all possible labels for this annotation task in DataFrame format
- pd.DataFrame: Column names are:
- ‘idx’, ‘name’, ‘abbreviation’, ‘description’, ‘timestamp’, ‘external_id’, ‘is_deleted’, ‘parent_leaf_id’ ,’is_root’
Type: pd.DataFrame
-
progress
¶ Progress in percent.
Value range 0…100.
Type: float
-
DataExport¶
-
class
lost.pyapi.pipe_elements.
DataExport
(pe, dbm)[source]¶ -
file_path
¶ A list of absolute path to exported files
Type: list of str
-
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
VisualOutput¶
-
class
lost.pyapi.pipe_elements.
VisualOutput
(pe, dbm)[source]¶ -
html_strings
¶ list of html strings.
Type: list of str
-
img_paths
¶ List of absolute paths to images.
Type: list of str
-
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
Loop¶
-
class
lost.pyapi.pipe_elements.
Loop
(pe, dbm)[source]¶ -
inp
¶ Input of this pipeline element
Type: lost.pyapi.inout.Input
-
is_broken
¶ True if loop is broken
Type: bool
-
iteration
¶ Current iteration of this loop.
Type: int
-
max_iteration
¶ Maximum number of iteration.
Type: int
-
outp
¶ Output of this pipeline element
Type: lost.pyapi.inout.Output
-
pe_jump
¶ PipelineElement where this loop will jump to when looping.
-
pipe_info
¶ An object with pipeline informations
Type: lost.pyapi.pipeline.PipeInfo
-
model¶
ImageAnno¶
-
class
lost.db.model.
ImageAnno
(anno_task_id=None, user_id=None, timestamp=None, state=None, sim_class=None, result_id=None, img_path=None, frame_n=None, video_path=None, iteration=0, anno_time=None, is_junk=None, description=None, fs_id=None, meta=None, meta_blob=None, img_actions=None)[source]¶ An ImageAnno represents an image annotation.
Multiple labels as well as 2d annotations (e.g. points, lines, boxes, polygons) can be assigned to an image.
-
img_path
¶ Abs path to image in file system
Type: str
-
frame_n
¶ If this image is part of an video, frame_n indicates the frame number.
Type: int
-
video_path
¶ If this image is part of an video, this should be the path to that video in file system.
Type: str
-
sim_class
¶ The similarity class this anno belong to. It is used to cluster similar annos in MIA
Type: int
-
anno_time
¶ Overall annotation time in seconds.
-
timestamp
¶ Timestamp of ImageAnno
Type: DateTime
-
iteration
¶ The iteration of a loop when this anno was created.
Type: int
-
idx
¶ ID of this ImageAnno in database
Type: int
-
anno_task_id
¶ ID of the anno_task this ImageAnno belongs to.
Type: int
-
state
¶ See
lost.db.state.Anno
Type: enum
-
result_id
¶ Id of the related result.
-
user_id
¶ Id of the annotator.
Type: int
-
is_junk
¶ This image was marked as Junk.
Type: bool
-
description
¶ Description for this annotation. Assigned by an annotator or algorithm.
Type: str
-
fs_id
¶ Id of the filesystem where image is located
Type: int
-
meta
¶ A field for meta information added by a script
Type: str
-
img_actions
¶ Actions performed by users for this image
Type: str
-
get_anno_vec
(anno_type='bbox')[source]¶ Get related 2d annotations in list style.
Parameters: anno_type (str) – Can be ‘bbox’, ‘point’, ‘line’, ‘polygon’ Returns: - For POINTs:
- [[x, y], [x, y], …]
- For BBOXs:
- [[x, y, w, h], [x, y, w, h], …]
- For LINEs and POLYGONs:
- [[[x, y], [x, y],…], [[x, y], [x, y],…]]
Return type: list of list of floats Example
In the following example all bounding boxes of the image annotation will be returned in list style:
>>> img_anno.anno_vec() [[0.1 , 0.2 , 0.3 , 0.18], [0.25, 0.25, 0.2, 0.4]]
-
iter_annos
(anno_type='bbox')[source]¶ Iterator for all related 2D annotations of this image.
Parameters: anno_type (str) – Can be bbox’, ‘point’, ‘line’, ‘polygon’, ‘all’ - Retruns:
- iterator of
TwoDAnno
objects
Example
>>> for bb in img_anno.iter_annos('bbox'): ... do_something(bb)
-
to_df
()[source]¶ Tranform this ImageAnnotation and all related TwoDAnnotaitons into a pandas DataFrame.
Returns: - Column names are:
- ’img_uid’, ‘img_timestamp’, ‘img_state’, ‘img_sim_class’, ‘img_frame_n’, ‘img_path’, ‘img_iteration’, ‘img_user_id’, ‘img_anno_time’, ‘img_lbl’, ‘img_lbl_id’, ‘img_user’, ‘img_is_junk’, ‘img_fs_name’, ‘anno_uid’, ‘anno_timestamp’, ‘anno_state’, ‘anno_dtype’, ‘anno_sim_class’, ‘anno_iteration’, ‘anno_user_id’, ‘anno_user’, ‘anno_confidence’, ‘anno_time’, ‘anno_lbl’, ‘anno_lbl_id’, ‘anno_style’, ‘anno_format’, ‘anno_comment’, ‘anno_data’
Return type: pandas.DataFrame
-
to_dict
(style='flat')[source]¶ Transform this ImageAnno and all related TwoDAnnos into a dict.
Parameters: style (str) – ‘flat’ or ‘hierarchical’. Return a dict in flat or nested style. Returns: In ‘flat’ style return a list of dicts with one dict per annotation. In ‘hierarchical’ style, return a nested dictionary. Return type: list of dict OR dict Example
HowTo iterate through all TwoDAnnotations of this ImageAnno dictionary in flat style:
>>> for d in img_anno.to_dict(): ... print(d['img_path'], d['anno_lbl'], d['anno_dtype']) path/to/img1.jpg [] None path/to/img1.jpg ['Aeroplane'] bbox path/to/img1.jpg ['Bicycle'] point
Possible keys in flat style:
>>> img_anno.to_dict()[0].keys() dict_keys([ 'img_uid', 'img_timestamp', 'img_state', 'img_sim_class', 'img_frame_n', 'img_path', 'img_iteration', 'img_user_id', 'img_anno_time', 'img_lbl', 'img_lbl_id', 'img_user', 'img_is_junk', 'img_fs_name', 'anno_uid', 'anno_timestamp', 'anno_state', 'anno_dtype', 'anno_sim_class', 'anno_iteration', 'anno_user_id', 'anno_user', 'anno_confidence', 'anno_time', 'anno_lbl', 'anno_lbl_id', 'anno_style', 'anno_format', 'anno_comment', 'anno_data' ])
HowTo iterate through all TwoDAnnotations of this ImageAnno dictionary in hierarchical style:
>>> h_dict = img_anno.to_dict(style='hierarchical') >>> for d in h_dict['img_2d_annos']: ... print(h_dict['img_path'], d['anno_lbl'], d['anno_dtype']) path/to/img1.jpg [Aeroplane] bbox path/to/img1.jpg [Bicycle] point
Possible keys in hierarchical style:
>>> h_dict = img_anno.to_dict(style='hierarchical') >>> h_dict.keys() dict_keys([ 'img_uid', 'img_timestamp', 'img_state', 'img_sim_class', 'img_frame_n', 'img_path', 'img_iteration', 'img_user_id', 'img_anno_time', 'img_lbl', 'img_lbl_id', 'img_user', 'img_is_junk', 'img_fs_name', 'img_2d_annos' ]) >>> h_dict['img.twod_annos'][0].keys() dict_keys([ 'anno_uid', 'anno_timestamp', 'anno_state', 'anno_dtype', 'anno_sim_class', 'anno_iteration', 'anno_user_id', 'anno_user', 'anno_confidence', 'anno_time', 'anno_lbl', 'anno_lbl_id', 'anno_style', 'anno_format', 'anno_comment', 'anno_data' ])
-
to_vec
(columns='all')[source]¶ Transform this ImageAnnotation and all related TwoDAnnotations in list style.
Parameters: columns (str or list of str) – ‘all’ OR ‘img_uid’, ‘img_timestamp’, ‘img_state’, ‘img_sim_class’, ‘img_frame_n’, ‘img_path’, ‘img_iteration’, ‘img_user_id’, ‘img_anno_time’, ‘img_lbl’, ‘img_lbl_id’, ‘img_user’, ‘img_is_junk’, ‘img_fs_name’, ‘anno_uid’, ‘anno_timestamp’, ‘anno_state’, ‘anno_dtype’, ‘anno_sim_class’, ‘anno_iteration’, ‘anno_user_id’, ‘anno_user’, ‘anno_confidence’, ‘anno_time’, ‘anno_lbl’, ‘anno_lbl_id’, ‘anno_style’, ‘anno_format’, ‘anno_comment’, ‘anno_data’ - Retruns:
- list OR list of lists: Desired columns
Example
Return just a list of 2d anno labels:
>>> img_anno.to_vec('anno_lbl') [['Aeroplane'], ['Bicycle']]
Return a list of lists:
>>> img_anno.to_vec(['img_path', 'anno_lbl']) [ ['path/to/img1.jpg', ['Aeroplane']], ['path/to/img1.jpg', ['Bicycle']] ]
-
TwoDAnno¶
-
class
lost.db.model.
TwoDAnno
(anno_task_id=None, user_id=None, timestamp=None, state=None, track_id=None, sim_class=None, img_anno_id=None, timestamp_lock=None, iteration=0, data=None, dtype=None, confidence=None, anno_time=None, description=None, meta=None, is_example=False, meta_blob=None)[source]¶ A TwoDAnno represents a 2D annotation/ drawing for an image.
A TwoDAnno can be of type point, line, bbox or polygon.
-
idx
¶ ID of this TwoDAnno in database
Type: int
-
anno_task_id
¶ ID of the anno_task this TwoDAnno belongs to.
Type: int
-
timestamp
¶ Timestamp created of TwoDAnno
Type: DateTime
-
timestamp_lock
¶ Timestamp locked in view
Type: DateTime
-
state
¶ can be unlocked, locked, locked_priority or labeled (see
lost.db.state.Anno
)Type: enum
-
track_id
¶ The track id this TwoDAnno belongs to.
Type: int
-
sim_class
¶ The similarity class this anno belong to. It is used to cluster similar annos in MIA.
Type: int
-
iteration
¶ The iteration of a loop when this anno was created.
Type: int
-
user_id
¶ Id of the annotator.
Type: int
-
img_anno_id
¶ ID of ImageAnno this TwoDAnno is appended to
Type: int
-
data
¶ drawing data (for e.g. x,y, width, height) of anno - depends on dtype
Type: Text
-
dtype
¶ type of TwoDAnno (for e.g. bbox, polygon) (see
lost.db.dtype.TwoDAnno
)Type: int
-
confidence
¶ Confidence of Annotation.
Type: float
-
anno_time
¶ Overall Annotation Time in ms.
-
description
¶ Description for this annotation. Assigned by an annotator or algorithm.
Type: str
-
meta
¶ A field for meta information added by a script
Type: str
-
is_example
¶ Indicates wether this annotation is an example for the selected label.
Type: bool
-
add_label
(label_leaf_id)[source]¶ Add a label to this 2D annotation.
Parameters: label_leaf_id (int) – Id of the label_leaf that should be added.
-
bbox
¶ BBOX annotation in list style [x, y, w, h]
Example
>>> anno = TwoDAnno() >>> anno.bbox = [0.1, 0.1, 0.2, 0.2] >>> anno.bbox [0.1, 0.1, 0.2, 0.2]
Type: list
-
get_anno_serialization_format
()[source]¶ Get annotation data in list style parquet serialization.
Returns: - For a POINT:
- [[ x, y ]]
- For a BBOX:
- [[ x, y, w, h ]]
- For a LINE and POLYGONS:
- [[x, y], [x, y],…]
Return type: list of floats Example
HowTo get a numpy array? In the following example a bounding box is returned:
>>> np.array(twod_anno.get_anno_vec()) array([0.1 , 0.2 , 0.3 , 0.18])
-
get_anno_vec
()[source]¶ Get annotation data in list style.
Returns: - For a POINT:
- [x, y]
- For a BBOX:
- [x, y, w, h]
- For a LINE and POLYGONS:
- [[x, y], [x, y],…]
Return type: list of floats Example
HowTo get a numpy array? In the following example a bounding box is returned:
>>> np.array(twod_anno.get_anno_vec()) array([0.1 , 0.2 , 0.3 , 0.18])
-
line
¶ LINE annotation in list style [[x, y], [x, y], …]
Example
>>> anno = TwoDAnno() >>> anno.line = [[0.1, 0.1], [0.2, 0.2]] >>> anno.line [[0.1, 0.1], [0.2, 0.2]]
Type: list of list
-
point
¶ POINT annotation in list style [x, y]
Example
>>> anno = TwoDAnno() >>> anno.point = [0.1, 0.1] >>> anno.point [0.1, 0.1]
Type: list
-
polygon
¶ polygon annotation in list style [[x, y], [x, y], …]
Example
>>> anno = TwoDAnno() >>> anno.polygon = [[0.1, 0.1], [0.2, 0.1], [0.15, 0.2]] >>> anno.polygon [[0.1, 0.1], [0.2, 0.1], [0.15, 0.2]]
Type: list of list
-
to_df
()[source]¶ Transform this annotation into a pandas DataFrame
Returns: A DataFrame where column names correspond to the keys of the dictionary returned from to_dict() method. Return type: pandas.DataFrame Note
- Column names are:
- ‘anno_uid’, ‘anno_timestamp’, ‘anno_state’, ‘anno_dtype’, ‘anno_sim_class’, ‘anno_iteration’, ‘anno_user_id’, ‘anno_user’, ‘anno_confidence’, ‘anno_time’, ‘anno_lbl’, ‘anno_lbl_id’, ‘anno_style’, ‘anno_format’, ‘anno_comment’, ‘anno_data’
-
to_dict
(style='flat')[source]¶ Transform this object into a dict.
Parameters: style (str) – ‘flat’ or ‘hierarchical’ ‘flat’: Return a dictionray in table style ‘hierarchical’: Return a nested dictionary - Retruns:
- dict: In flat or hierarchical style.
Example
Get a dict in flat style. Note that ‘anno.data’, ‘anno.lbl.idx’, ‘anno.lbl.name’ and ‘anno.lbl.external_id’ are json strings in contrast to the hierarchical style.
>>> bbox.to_dict(style='flat') { 'anno_uid': 1, 'anno_timestamp': datetime.datetime(2022, 10, 27, 11, 27, 31), 'anno_state': 4, 'anno_dtype': 'point', 'anno_sim_class': None, 'anno_iteration': 0, 'anno_user_id': 1, 'anno_user': 'admin', 'anno_confidence': None, 'anno_time': 2.5548, 'anno_lbl': ['Person'], 'anno_lbl_id': [16], 'anno_style': 'xy', 'anno_format': 'rel', 'anno_comment': None, 'anno_data': [[0.5683337459767269, 0.3378842004739504]]} }
-
to_vec
(columns='all')[source]¶ Tansfrom this annotation in list style.
Parameters: columns (list of str OR str) – Possible column names are: ‘all’ OR ‘anno_uid’, ‘anno_timestamp’, ‘anno_state’, ‘anno_dtype’, ‘anno_sim_class’, ‘anno_iteration’, ‘anno_user_id’, ‘anno_user’, ‘anno_confidence’, ‘anno_time’, ‘anno_lbl’, ‘anno_lbl_id’, ‘anno_style’, ‘anno_format’, ‘anno_comment’, ‘anno_data’ Returns: A list of the desired columns. Return type: list of objects Example
If you want to get only the annotation in list style e.g. [xc, yc, w, h] (if this TwoDAnnotation is a bbox).
>>> anno.to_vec('anno_data') [0.1, 0.1, 0.2, 0.2]
-
LabelLeaf¶
-
class
lost.db.model.
LabelLeaf
(idx=None, name=None, abbreviation=None, description=None, timestamp=None, external_id=None, label_tree_id=None, is_deleted=None, parent_leaf_id=None, is_root=None, group_id=None, color=None)[source]¶ A LabelLeaf
-
idx
¶ ID in database.
Type: int
-
name
¶ Name of the LabelName.
Type: str
-
abbreviation
¶ Type: str
-
description
¶ Type: str
-
timestamp
¶ Type: DateTime
-
external_id
¶ Id of an external semantic label system (for e.g. synsetid of wordnet)
Type: str
-
is_deleted
¶ Type: Boolean
-
is_root
¶ Indicates if this leaf is the root of a tree.
Type: Boolean
-
parent_leaf_id
¶ Reference to parent LabelLeaf.
Type: Integer
-
group_id
¶ Group this Label Leaf belongs to
Type: int
-
color
¶ Color of the label in Hex format.
Type: str
Note
group_id is None if this filesystem is available for all users!
-
Label¶
-
class
lost.db.model.
Label
(idx=None, dtype=None, label_leaf_id=None, img_anno_id=None, two_d_anno_id=None, annotator_id=None, timestamp_lock=None, timestamp=None, confidence=None, anno_time=None)[source]¶ Represants an Label that is related to an annoation.
-
idx
¶ ID in database.
Type: int
-
dtype
¶ lost.db.dtype.Result
type of this attribute.Type: enum
-
label_leaf_id
¶ ID of related
model.LabelLeaf
.
-
img_anno_id
¶ Type: int
-
two_d_anno_id
¶ Type: int
-
timestamp
¶ Type: DateTime
-
timestamp_lock
¶ Type: DateTime
-
label_leaf
¶ related
model.LabelLeaf
object.Type: model.LabelLeaf
-
annotator_id
¶ GroupID of Annotator who has assigned this Label.
Type: Integer
-
confidence
¶ Confidence of Annotation.
Type: float
-
anno_time
¶ Time of annotaiton duration
Type: float
-
logic.label¶
LabelTree¶
-
class
lost.logic.label.
LabelTree
(dbm, root_id=None, root_leaf=None, name=None, logger=None, group_id=None)[source]¶ A class that represants a LabelTree.
Parameters: - dbm (
lost.db.access.DBMan
) – Database manager object. - root_id (int) – label_leaf_id of the root Leaf.
- root_leaf (
lost.db.model.LabelLeaf
) – Root leaf of the tree. - name (str) – Name of a label tree.
- logger (logger) – A logger.
- group_id (int) – Id of the group where the LabelTree belongs to.
-
create_child
(parent_id, name, external_id=None)[source]¶ Create a new leaf in label tree.
Parameters: - parent_id (int) – Id of the parend leaf.
- name (str) – Name of the leaf e.g the class name.
- external_id (str) – Some id of an external label system.
- Retruns:
lost.db.model.LabelLeaf
: The the created child leaf.
-
create_root
(name, external_id=None)[source]¶ Create the root of a label tree.
Parameters: - name (str) – Name of the root leaf.
- external_id (str) – Some id of an external label system.
- Retruns:
lost.db.model.LabelLeaf
or None:- The created root leaf or None if a root leaf with same name is already present in database.
-
delete_subtree
(leaf)[source]¶ Recursive delete all leafs in subtree starting with leaf
Parameters: leaf ( lost.db.model.LabelLeaf
) – Delete all childs of this leaf. The leaf itself stays.
-
get_child_vec
(parent_id, columns='idx')[source]¶ Get a vector of child labels.
Parameters: - parent_id (int) – Id of the parent leaf.
- columns (str or list of str) – Can be any attribute of
lost.db.model.LabelLeaf
for example ‘idx’, ‘external_idx’, ‘name’ or a list of these e.g. [‘name’, ‘idx’]
Example
>>> label_tree.get_child_vec(1, columns='idx') [2, 3, 4]
>>> label_tree.get_child_vec(1, columns=['idx', 'name']) [ [2, 'cow'], [3, 'horse'], [4, 'person'] ]
Returns: Return type: list in the requested columns
-
import_df
(df)[source]¶ Import LabelTree from DataFrame
Parameters: df (pandas.DataFrame) – LabelTree in DataFrame style. - Retruns:
lost.db.model.LabelLeaf
or None:- The created root leaf or None if a root leaf with same name is already present in database.
- dbm (
dtype¶
util methods¶
anno_helper¶
A module with helper methods to tranform annotations into different formats and to crop annotations from an image.
-
lost.pyapi.utils.anno_helper.
calc_box_for_anno
(annos, types, point_padding=0.05)[source]¶ Calculate a bouning box for an arbitrary 2DAnnotation.
Parameters: - annos (list) – List of annotations.
- types (list) – List of types.
- point_padding (float, optional) – In case of a point we need to add some padding to get a box.
Returns: A list of bounding boxes in format [[xc,yc,w,h],…]
Return type: list
-
lost.pyapi.utils.anno_helper.
crop_boxes
(annos, types, img, context=0.0, draw_annotations=False)[source]¶ Crop a bounding boxes for TwoDAnnos from image.
Parameters: - annos (list) – List of annotations.
- types (list) – List of types.
- img (numpy.array) – The image where boxes should be cropped from.
- context (float) – The context that should be added to the box.
- draw_annotations (bool) – If true, annotation will be painted inside the crop.
Returns: A tuple that contains a list of image crops and a list of bboxes [[xc,yc,w,h],…]
Return type: (list of numpy.array, list of list of float)
-
lost.pyapi.utils.anno_helper.
divide_into_patches
(img, x_splits=2, y_splits=2)[source]¶ Divide image into x_splits*y_splits patches.
Parameters: - img (array) – RGB image (skimage.io.imread).
- x_splits (int) – Number of elements on x axis.
- y_splits (int) – Number of elements on y axis.
Returns: - img_patches, box_coordinates
img batches and box coordinates of these patches in the image.
Return type: list, list
Note
- img_patches are in following order:
- [[x0,y0], [x0,y1],…[x0,yn],…,[xn,y0], [xn, y1]…[xn,yn]]
-
lost.pyapi.utils.anno_helper.
draw_annos
(annos, types, img, color=(255, 0, 0), point_r=2)[source]¶ Draw annotations inside a image
Parameters: - annos (list) – List of annotations.
- types (list) – List of types.
- img (numpy.array) – The image to draw annotations in.
- color (tuple) – (R,G,B) color that is used for drawing.
Note
The given image will be directly edited!
Returns: Image with drawn annotations Return type: numpy.array
-
lost.pyapi.utils.anno_helper.
to_abs
(annos, types, img_size)[source]¶ Convert relative annotation coordinates to absolute ones
Parameters: - annos (list of list) –
- types (list of str) –
- img_size (tuple) – (width, height) of the image in pixels.
Returns: Annotations in absolute format.
Return type: list of list
-
lost.pyapi.utils.anno_helper.
trans_boxes_to
(boxes, convert_to='minmax')[source]¶ Transform a box from standard lost format into a different format
Parameters: - boxes (list of list) – Boxes in standard lost format [[xc,yc,w,h],…]
- convert_to (str) – minmax -> [[xmim,ymin,xmax,ymax]…]
Returns: Converted boxes.
Return type: list of list
blacklist¶
A helper module to deal with blacklists.
-
class
lost.pyapi.utils.blacklist.
ImgBlacklist
(my_script, name='img-blacklist.json', context='pipe')[source]¶ A class to deal with image blacklists.
Such blacklists are often used for annotation loops, in order to prevent annotating the same image multiple times.
-
my_script
¶ The script instance that creates this blacklist.
Type: lost.pyapi.script.Script
-
name
¶ The name of the blacklist file.
Type: str
-
context
¶ Options: instance, pipe, static
Type: str
Example
Add images to blacklist.
>>> blacklist = ImgBlacklist(self, name='blacklist.json') >>> blacklist.add(['path/to/img0.jpg']) >>> balcklist.save()
Load a blacklist and check if a certain image is already in list.
>>> blacklist = ImgBlacklist(self, name='blacklist.json') >>> blacklist.contains('path/to/img0.jpg') True >>> blacklist.contains('path/to/img1.jpg') False
Get list of images that are not part of the blacklist
>>> blacklist.get_whitelist(['path/to/img0.jpg', 'path/to/img1.jpg', 'path/to/img2.jpg']) ['path/to/img1.jpg', 'path/to/img2.jpg']
Add images to the blacklist
>>> blacklist.add(['path/to/img1.jpg', 'path/to/img2.jpg'])
-
add
(imgs)[source]¶ Add a list of images to blacklist.
Parameters: imgs (list) – A list of image identifiers that should be added to the blacklist.
-
contains
(img)[source]¶ Check if blacklist contains a spcific image
Parameters: img (str) – The image identifier Returns: True if img in blacklist, False if not. Return type: bool
-
get_whitelist
(img_list, n='all')[source]¶ Get a list of images that are not part of the blacklist.
Parameters: - img_list (list of str) – A list of images where should be checked if they are in the blacklist
- n ('all' or 'int') – The maximum number of images that should be returned.
Returns: A list of images that are not in the blacklist.
Return type: list of str
-